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ABSTRACT
The abundance of data about user transactions and interactions
has fostered the use of machine learning techniques in financial
institutions and startups. Going beyond classical application areas,
such as campaign management, these methods can be used to per-
sonalize services at different levels. In this paper we explore a use
case, related to mobile banking apps, to forecast unusual expenses.
Building a system to forecast customer expenses involves large
amounts of data and requires the use of high capacity machine
learning models. Deep neural networks are clear candidates to this
end, but the mainstream application of this technology is still based
on producing point estimates. This is a clear limitation in scenarios
where being aware of the uncertainty in prediction is crucial. This
paper proposes the use of neural networks that yield distributions
rather than point estimates. This extension can be applied to any
neural network by considering a loss function corresponding to
the log-likelihood of a Laplacian distribution of the output. We
show with a large transaction dataset that it is possible to lever-
age uncertainty information in order to robustly detect outliers,
corresponding to unusual expense categories and that this in-
formation could be effectively translated into notifications to users
in the app, which would allow them to review and better understand
their expenses.
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1 INTRODUCTION
Banks, other financial institutions and startups have started of-
fering personalized money management and advice tools to their
users. As a recent benchmark shows[15], there is increasing expec-
tation for financial tools to offer services such as predictive insights,

personalized offers or automation. Not surprisingly, this domain
has witnessed progress in machine learning algorithms, such as
recommenders [2, 13], to power such functionalities, or to optimize
aspects such as customer retention [10].

As an example, the BBVA mobile app provides more than 5M
customers with advice services such as categorization of expenses,
aggregation of other bank accounts, forecasting expenses, person-
alized alerts or estimation of real estate prizes, among others.

Use Case: Unusual Expense Forecasting. One of the BBVA mobile
app functionalities, ’Forecasted Expenses’, tries to estimate the
monetary amount that a user will spend next month on a given
category of interest1 . Here, the term ‘categories’ denote expense
codes grouped to a certain level of semantics, e.g. “groceries” or
“electricity bill”. This is typically the output of a categorizer, which
nowadays is a basic building block in Personal FinanceManagement
(PFM) Tools [15].

In the app, a forecasting model is employed to estimate expenses
in month number T + 1 from the historical series of T months.
The app then displays a list of such anticipated expenses. In some
particular cases (e.g. a recurring bill), the expense is due to a single
transaction and a model tries to estimate the arrival date; in such a
case, the upcoming transaction is displayed in a so-called Financial
Calendar. Fig. 1 and 2 show screenshots of the Calendar View and
the Categories view for a real sample of Forecasted Expenses.

We notice that human expenses can be intermittent, very variable
and even inconsistent or erratic. Therefore, forecasting expenses is
a difficult task, and in many cases it is possible that there is little
signal that can be used to anticipate the next month. While there
are still a set of situations where we observe signal, such as bills,
or recurrent expenses, many forecasts will be meaningless – or in
practice reduce to the mean of the past expenses. In many cases,
users will not be that interested in knowing the exact forecast, but
more interested in knowing whether the actual expense they made
significantly deviates from the forecast. This corresponds to (positive
and negative) situations such as spending higher than a certain
usual budget, an expected income that did not arrive, achievements
in savings or changes in spending behavior. These are day-to-day
money management situations that can go unnoticed and that we
might be interested in detecting and signaling them to customers,
e.g. through notifications.

1In this text, we will always talk about ‘expenses’ to simplify, but note that, without
loss of generality, the method can also be applied to detect unusual income. From
now on we treat income as a “negative” expense, and hence the same framework is
applicable.
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Figure 1: Forecasted Expenses in the BBVA App: Calendar
View

Figure 2: Forecasted Expenses in the BBVA App: Categories
View

In this work, we describe part of an exploratory study where
the goal is to detect unusual expenses using real data from the
aforementioned application, and deep neural network models.

Next, we explain how mainstream implementations of deep net-
works fail at outputting a distribution and our envisaged solution
for unusual expense detection.

2 MODEL: FORECASTING AND UNUSUAL
EXPENSE DETECTION

2.1 Background on forecasting expenses
For each user and each category, we can construct a series of T his-
torical values of past expenses, which we denote y = {y1, . . . ,yT }.
The task of the forecasting module is to estimate a function

ŷT+1 = ϕ(y)

such that ŷT+1 is the estimated value of the expense in the next
month, for the given user and category.

There are many forecasting (and regression) models that can
be applied to fit a dataset of windows of the form ({y,yT+1}) and
approximate ϕ(·) [9]. A common choice are methods based on
random forests [4, 12] or gradient boosting [7]. Another common
choice would be to use deep learning methods. We have confirmed
in a previous study [6] that deep learning yields more accurate point
estimates; i.e estimates of yT+1 achieving lower error with respect
to the truey’s, when evaluated on common regression error metrics
such as mean absolute error or rooted mean-squared error [9].

However, one problem of deep learning models for regression
is that they provide point estimates of yT+1, but not information
related to the uncertainty or the distribution of the of the estimate.
This is because the straightforward version of a neural network
for regression contains a single output layer corresponding to the
response variableyT+1. Under these circumstances, detecting an un-
usual expense can be done by e.g. measuring the absolute difference
between the observed expense and the forecasted one, |yT+1−yobs |.
But this ignores the variance of the estimate (a large difference can
be due to a bad estimate or a large variance). Therefore, we seek a
more principled method to detect unusual expenses using deep regres-
sion networks.

2.2 Capturing uncertainty with neural
networks

To be capable of detecting unusual expenses, we need the neural
network to output a distribution, instead of a point estimate.

Network architecture. Inspired by the literature in neural net-
works for heteroscedastic data [3, 5, 14], we propose a network
architecture that produces an output of the form:

µ̂T+1 = ϕ(y)

σ̂T+1 = ψ (y)

Here, ϕ : RT → R and ψ : RT → R denote the output of
neural networks which take y as input, and each output a single
scalar. Those scalars represent the location and scale parameters of
a unimodal distribution of choice (e.g. Normal or Laplacian), which
we call д(yT+1 |µ,σ ) for generality.

One can interpret this setting as inputting the vector of historical
values y and outputting a distribution.

For clarity, an example of such a network is illustrated in Fig.
3, taking the exemplary architecture of a multi-layer perceptron,
where the input y and outputs µ̂ and σ̂ are linked by fully-connected
layers.
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Figure 3: Network architecture to predict a distribution.

Note that this is for illustration purposes, and that the formula-
tion used in this paper is independent from the specific network
architecture (as long as the loss function is differentiable). There-
fore, we note other choices are possible and the only requirement is
outputting two scalars. Therefore, the network could also contain
convolutional layers or LSTM layers [11] – in fact, the latter are
used in experiments.

Differently from “vanilla” neural network architectures, which
would have a single output and could be minimized by optimizing
e.g. a loss capturing a sum-of-squared errors, now we have two
outputs µ̂ and σ̂ that represent a distribution. Therefore, in order
to estimate the parameters of such a network, we minimize a loss
suitable for distrubutions, such as the log-likelihood.

Regardless of the distribution, one advantage is that the outputs
of the network, ϕ andψ , can be interpreted directly as the expected
value yT+1 and its associated “uncertainty”.

Training. As in any probabilistic model, an objective function
that is suitable to fit parameters so that the distributions д(·) best
fit the observed data is the log-likelihood:

loдL(W,V) =
N∑
n=1

logд(yn |ϕ(yn ;W),ψ (yn ;V)) (1)

Here, W denotes all the parameters (weights) of the network
responsible for predicting ϕ, while V denotes the weights of the
network responsible for predictingψ . As noted in Eq. 1, we have
made explicit that ϕ and ψ depend on W and V. Additionally, yn

and yn is the dataset of N samples, consisting of pairs of historical
value and the true value to predict.

In order to find the weightsW and V that maximize the objec-
tive function in Eq. 1, we typically use stochastic gradient ascent
methods. With current tools such as TensorFlow [1], which allow
automatic differentiation of arbitrary computation graphs, we can
input that objective function and optimize the weights against a
training set. The particular distribution chosen and specific loss
function will be discussed in the experimental section.

2.3 Outlier detection
Once the network is trained, it can be used to forecast the distribu-
tion of the next expense value in a certain category for a certain
user.

For a user and category with a historical series y, who observes a
valueyobs as the next expense, one can compare this observation to
the predicted distribution д(yT+1 |ϕ(y),ψ (y)). This allows checking
whether the new observation is likely according to the predicted
distribution.

In fact, the likelihood д(yobs |ϕ(y),ψ (y)) could be a direct indica-
tor of ‘normality’ which takes into account both the absolute error
and the variance of the prediction. Perhaps in order to be more in-
terpretable, one could compute the probability, under д, that an
expense is higher than yobs .

P(Y > yobs ) = 1 −G(yobs ) (2)

whereG denotes the cumulative distribution, which has known
closed-form for cases such as those of the Normal or Laplacian
distributions.

Therefore, we would flag an expense as unusual if the corre-
sponding indicator is below a pre-specified threshold.

3 EXPERIMENTAL VALIDATION
We have carried out a proof of concept of the proposed method. For
a quantitative evaluation, we used an anonymized and aggregated
dataset of expenses containing 2M pairs of samples (y, yT+1) for
training and 1M for testing, corresponding to real expenses in
certain categories of users with explicit consent.

We highlight that in this paper we evaluate the capability of the
heteroscedastic model to detect outliers. An exhaustive evaluation
on how the model performs in terms of forecasting accuracy and
uncertainty modeling (without the outliers use case) can be found
in [5], as well as comparison to other models.

Below we specify some details of the implementation and evalu-
ation.

Output distribution. As the specific choice of output distribution
д(·), we took a Laplacian distribution. In preliminary experiments,
we noticed that a Laplacian converges faster and yields better results
than a Normal distribution. We attribute this observation to the
fact that our data contains many (and strong) outliers.

When plugging in the specific equation of the Laplacian distri-
bution into the loss function 1, one obtains:
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L

(
W ,V ; {(yi ,yi )}

N
i=1

)
= −

N∑
i=1

[
− log(Ψ(yi )) −

1
Ψ(yi )

| yi − ϕ(yi ) |

]
(3)

Details of the Network architecture. After a refinement process,
the neural network architecture used was 2 LSTM layers [8] with
128 output neurons each one concatenated with two dense layers
of 128 and 2 output neurons, respectively.

Train/Test split. The test series consist of a history of T months,
and the target is the expense in month T + 1. For training, we use
series which have the same month of the previous year as target, and
a history of the same length. In total we use 2M series for training
and 1M for testing.

3.1 Qualitative results
Fig. 4 shows some examples of series and compares the next true
value with the predicted distribution. In order to visualize the pre-
dicted distribution, we plot the location and scale parameters; lo-
cation Φ(yi ) as a point, and the scale parameter as an error bar of
lengh Ψ(yi ) centered in Φ(yi ).

In Fig. 4 we show three types of examples. The first row shows
examples of correct forecast, where the observed target expense
(cross) is near the prediction (red dot), and the scale parameter of
the distribution is small, indicating a sharp distribution, such as a
periodic trimonthly bill (first row, right). The second row shows ex-
amples where the absolute difference between the observed target
expense and the prediction is far away in absolute terms, but still
likely when taking into account the distribution. Finally, the last
row contains examples where the prediction is far off the observed
value, both in absolute terms and taking into account the distribu-
tion. Here, oth columns show an expense many times larger the
maximum amount of the previous expense. These cases are what we
would label as unexpected expenses, whe ones that we would like to
signal to users.

What is clear from Fig. 4 is that, in order to perform outlier detec-
tion, it is crucial to predict a distribution, rather than a single point
estimate. In the cases where the error bar depicting the scale is large,
a big absolute error is not necessarily an indicator of “unusual”.

3.2 Quantitative evaluation
To evaluate the performance of outlier detection, we labelled some
series as “outliers” and evaluate if the outliers lie in the last positions
when ranking the test examples by decreasing likelihood.

To label the bins as outliers, we took a test set with samples
of the form (y,yT+1,yobs ). We define the error as |yT+1 − yobs |,
sorted by increasing error and discretized into 10 bins, which we
call Q10, . . . ,Q100. We assume that the bins (Q80, Q90, Q100) cor-
respond to samples with very large errors and, regardless of the
response distributions, will contain a huge fraction of outliers. We
verify this by visual inspection. All in all, Q80, Q90 and Q100 are
classes of samples with (increasingly) high presence of outliers.

Then, we will sort all the samples of the test set by likelihood.
For each likelihood value, we compute:

• x-axis: The total % of samples above that likelihood value

• y-axis: The % of samples of a certain outlier class (Q80, Q90
or Q100) with likelihood above that value.

With that definition, Fig. 5 shows the reject curves for Q80, Q90
or Q100. The result is satisfactory: the samples with high likelihoods
(small % values of the x-axis) contain a small number of outliers,
and outlier presence signigicanly increases for the samples with
lowest likelihoods (i.e. high % values the x-axis). That the increase
occurs further in the x-axis, depending on whether we take Q80,
Q90 and Q100, which are the outlier classes sorted by ’severity’.

This indicates that the the current model is effectively assign-
ing low likelihoods to outliers, and consistently more to stronger
outliers. These outlier detections could translate into notifications
to users in the app so that they can review and better understand
their expenses.

4 CONCLUSION
Motivated by the use of a deep neural network model in a financial
application, we study a baseline method to extend the output of
neural networks to yield distributions rather than point estimates.
We show that this extension can be easily applied to any deep
regression network by considering a probabilistic loss function.
The produced estimators shows promising results in a real scenario
that involves millions of bank customers.

Further extensions could be defined in a number of directions.
One of the most promising directions is the extension of this model
to deal with heterogeneous distributions. The use of simple proba-
bilistic models to characterize output uncertainty, mainly the Nor-
mal and Laplacian models, presents some clear limitations if we
are interested in managing outliers based on their uncertainty. For
example, uncertain outcomes related to multimodal outputs could
require a treatment that is significantly different for unimodal out-
puts with large variance. This limitation can be overcome by design-
ing neural networks that can output an arbitrary, heterogeneous
distribution for every input.
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