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ABSTRACT
The analysis of end-of-day account balance offers key indicators
of customers’ situation and can help to define advisory and proac-
tive actions towards their financial well-being. The detection of
unexpected variations in its evolution arise as a key matter, given
that they may expose events that require immediate attention or
substantial changes in customers’ context. We present a system
that puts together (i) time series forecasting with uncertainty; (ii)
statistical detection of extreme values; and (iii) analysis of financial
transactions to notify and improve the visibility of this type of
events for customers. We discuss the main details of the models
and data engines that encompass this system, and present empirical
results to illustrate their outcomes in real use cases.

CCS CONCEPTS
• Information systems → Data analytics; • Mathematics of
computing→ Time series analysis; •Computingmethodolo-
gies → Neural networks.
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1 INTRODUCTION
The end-of-day account balance offers several key indicators of
customers’ financial situation. Moreover, the dynamic evolution
of this parameter can help to characterize customers’ behavioral
patterns and depict advisory and proactive actions towards their
financial well-being.

In this regard, forecasting the future values of end-of-day account
balance can help to extract insights to reduce the impact of unde-
sirable situations—i.e., negative balance or lacks of liquidity—and
determine whether an unexpected event may have happened—i.e.,
excursions in balance amounts related to values lying out of likely
thresholds. Needless to say, these tasks can have a direct impact
on customers’ quality of experience as they can reduce their ex-
posure to disappointing situations—such as payment of fees or
late detection of undesired abrupt changes in personal accounts’
balance.

On its basic foundations, solving this problem is intrinsically
tied to time series forecasting. This is a broadly studied topic given
its prominent importance for many problems in diverse scopes [9],
which explains the literature devoted to techniques and applications.
Early attempts to model and extract patterns from time-varying
data relied on statistical models such as ARMA and ARIMA. The
adjustment of this type of models was integrated into classical
analytical frameworks—such as Box-Jenkins methodology or other
data-driven approaches based on careful transformations of input
data [20]—to improve the process of fitting and quality of results.

However, two key matters arise when considering the particular-
ities of customers’ balance series. First, these series can present com-
plex patterns, with seasonal components and periodic events. Sec-
ond, these patterns are related to the financial context of customers—
that is, their usage of accounts and diverse expenses and income
sources—which generates a broad heterogeneity in the observable
trends. Therefore, the forecasting techniques applied to this type
of series should be able to capture this variability.

Neural Networks (NN) were soon identified as a promising
model family given their flexibility and adaptability to complex
patterns [23]. Since the early explorations of NN in the field of time
series forecasting, there have appeared several architectures and
learning approaches to capture the peculiarities of these data—for
instance, the Long Short-Term Memory (LSTM) architecture [13].
These models have proven to better suit application contexts that
involve humongous data amounts and heterogeneous series.
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However, and generally speaking, time series forecasting solu-
tions have focused on the modeling and prediction of point-wise
estimates, while the stochastic nature of processes calls for the
introduction of probable future values. That is, as there are sev-
eral sources of uncertainty [10], forecasting models should include
mechanisms to account for the confidence and dispersion of the
regression results. Moreover, this can also simplify the applica-
tion of forecasting results to anomaly detection tasks, as it enables
the comparison of the observed values with the predicted ones at
different confidence levels.

With these principles in mind, we have implemented a complete
system that supports the detection and analysis of anomalous events
in customers’ account balance. This system encompasses three
stages to determine whether a variation in the end-of-day balance
amount is out of a confidence band and select a set of financial
transactions that relate to those events. The main contributions of
this work are threefold:

• First, we present a deep learning regression model that has
proven its capabilities to foresee customers’ end-of-day bal-
ance time series. This model is able to estimate the distribu-
tion of future values by conducting a quantile regression on
time series using a recurrent neural network.

• Second, we describe a method based on the predicted quan-
tiles to detect abrupt excursions in such series. This method
is based on probability thresholds to detect significant devia-
tions in series.

• Third, we show a method to link the extreme events in bal-
ance time series to the underlying financial transactions, in
order to gain insights into the type of situations that generate
such extreme events.

To present these contributions, the rest of the paper is organized
as follows. Section 2 reviews several previous works that frame our
solution and provided the theoretical foundation of our analysis.
Then, Section 3 details the main components of our solution and
the relation between them. On its part, Section 4 presents the use
case in which we have applied this solution, and details how we
have conducted the performance evaluation of each component.
With this, Section 5 focus on the empirical results of the system
and discuss their implications. Finally, Section 6 summarizes the
key remarks and concludes this work.

2 RELATEDWORK
As stated above, there are three main topics that intersect in this
work: time series forecasting, anomaly detection, and analysis of
financial transactions. In the following, we review some previous
results in those fields that relate to our solution.

Time series forecasting is an extensively explored field of study [4].
The proposals and techniques have spanned very diverse perspec-
tives [9], from the use of classic statistical tools—like exponential
smoothing [12] or auto-regressive methods [20]—to more com-
plex models such as NN [7, 13, 23] or Support Vector Machines
(SVM) [6, 17]. Particularly, NN models have proven to be quite
successful for the modeling of complex trends in time series when
there are diverse series typologies, and offer a complete framework
to obtain probabilistic estimates of future values.

In this regard, several previous works made use of different
approaches to forecast the future distribution of values in time
series. On the one hand, one of the multiple trends to cope with
this matter focuses on learning the parameters of the distribution,
using either a specific family such as Gaussian distributions [22,
24] or more flexible representations with finite [3] or continuous
mixture models —such as the case of UMAL [5]. On the other
hand, other solutions have applied quantile regression [18, 19] to
determine probabilistic levels for future values of series, sometimes
in combination with deep methods [8, 27]. Our solution follows
this latter approach, offering a grid of quantiles at the output.

Remarkably, common probabilistic outlier detection techniques [1]
can be used after forecasting future distributions for time series.
This is the basis of the second stage in our solution, in line with
previous works that defined algorithms for the detection of extreme
events using confidence intervals [28]. In our case, we operate with
order statistics to define bands that relate to values with low proba-
bility w.r.t. the predicted distribution, using the grid of quantiles
produced by the forecasting stage.

Finally, as stated above the detection of anomalous events may
render useless if customers do not receive a set of explanations of
the causes behind the events. To better understand these causes, we
have applied representation learning to the financial transactions
that occur during the anomalous events.

In line with the state of the art, we have accomplished this pro-
cess using graph analysis and node embedding techniques [16]. We
have focused on techniques such asDeepWalk [21] and node2vec [14],
as they suit the detection of communities or clusters among nodes in
the graph. The analysis of these clusters have followed some of the
principles that are usually applied during the evaluation of embed-
ding methods’ results [2, 25], as we have analyzed the relation of
the original movements’ features with the nodes’ representations.

3 ANALYTIC SOLUTION
Hereinafter, we present the main details of our analytic solution.
Specifically, we discuss the main stages along the pipeline depicted
in Fig. 1. Namely, we first describe the solution applied to the
forecasting with uncertainty of time series (S1 in the diagram);
then we discuss the strategy to determine atypical observations for
the punctual value of such series (S2); and finally we introduce the
key ideas of the analysis of the causes of atypical observations (S3).

3.1 Forecasting of financial time series
The first stage in our system relies on a deep learning model that
is trained to forecast the quantiles of net balance daily time series.
This approach is able to capture complex patterns, determining
likely future trajectories from the past values of series. Specifically,
we used an iterated recurrent neural network—see the schematic
representation in Fig. 2. Here, 𝑥𝑐 denotes the input (i.e. the bal-
ance datum) to the network at a given time step, 𝜙 (·) denotes the
deterministic function implemented by the trained recurrent cell,
and 𝑜𝑐+1 is the output of the recurrent cell. Next, we describe the
proposed training process, which is a variation of RNN aimed at
achieving long-term forecasting robustness.

Our modification upgrades a RNN to achieve long-term forecast-
ing robustness by using two stages in the unfolding of the RNNs.We
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Figure 1: Architectural diagram of the solution.We distinguish threemain stages: (S1) time series forecastingwith uncertainty;
(S2) detection of anomalous series; (S3) financial movement analysis.

consider working with series of length 𝑁 + 𝐾 . The first stage uses
the first 𝑁 input data. Each time, the input to the series is the newly
observed input datum 𝑥𝑐 at a given time. The series outputs 𝑜𝑐+1,
which should approximate the next input datum 𝑥𝑐+1. This stage
is common in RNN training, and we denote it as Confidence. The
next phase considers 𝐾 more inputs. The difference in this phase
is that each predicted output 𝑜𝑐+𝑡 is fed directly to the next input,
replacing 𝑥𝑐+𝑡 , which is not used as input. However, the output is
still compared with 𝑥𝑐+𝑡 to compute the loss. In other words, we
are forcing the recurrent cell to learn to forecast correctly 𝐾 time
steps in advance. This phase is denoted as Trust. Once the model is
trained, given an input series, any arbitrary number of future time
steps can be generated. This part is denoted as Hope.

However, in order to do long-horizon forecasting and ensure
that the forecast of future steps is meaningful, the RNN predictions
alone are not enough. Next, we describe how we introduce manage-
ment of uncertainty in our system. We seek for methods to model
forecasting uncertainty with three properties: (1) each prediction
should carry some sort of input-dependent ‘prediction interval’ (2)
the expected behavior for uncertainty is to increase with longer
forecasting horizons, and (3) the uncertainty quantities should be
calibrated with data.

Figure 2: Schematic representation of the iterated regression
model applied to time series forecasting.

In order to model the uncertainty of the time series, we selected
an approach based on quantile regression [19] after testing different
methods—such as Uncertainty Generalized Normal Distribution [5]
or Montecarlo Drop Out [11]. Differently from most regression
tasks, which model the expected value of the target variable given
the input [26], quantile regression estimates a desired quantile of the
target variable given the input. This is achieved using the following
loss function, sometimes known as pinball loss or quantile loss:

L𝜏 (𝑦, 𝑥) = (𝑦 − 𝑓𝑧 (𝑥)) · (𝜏 − 1[𝑦 < 𝑓𝑧 (𝑥))]) (1)

Here, (𝑥,𝑦) is a training sample and 𝑓𝜏 (𝑥) is the function imple-
mented by the forecaster. One can show that, after training, 𝑓𝜏 (𝑥)
approximates the 𝜏 th quantile of 𝑝 (𝑦 |𝑥). For illustration, Fig. 3 dis-
plays the result of quantile regression on a synthetic dataset. Here,
𝑓𝜏 (𝑥) has been implemented with a 3-layer dense neural network,
and designed to output the quantiles 𝜏 = 0.1, 𝜏 = 0.5 and 𝜏 = 0.9.
We see how, for each 𝑥 , the forecast of 𝑓0.5 approximates the median
of 𝑦, and 𝑓0.1 and 𝑓0.9 adjust to the scale of the data; as expected,
effectively informing about prediction intervals.

Coming back to our recurrent network, if we consider the loss of
predicting the value of a certain quantile 𝑞𝜏𝑖−1 and evaluate the loss
with respect to the next observation 𝑥𝑖 , the loss function becomes:

L𝜏 (𝑥𝑖 , 𝑞𝜏𝑖−1 ) = (𝑥𝑖 − 𝜙 (𝑞𝜏𝑖−1 )) · (𝜏 − 1[𝑥𝑖 < 𝜙 (𝑞𝜏𝑖−1 )]). (2)

The reason of the subscript 𝜏 is that we might be interested
in predicting the values of several quantiles simultaneously, for
instance for 𝜏 = 0.1, 𝜏 = 0.5 and 𝜏 = 0.9. This can be achieved by
combining all the 𝜏-dependent losses into a single loss function, e.g
through averaging:

L(𝑥𝑖 ,Qi−1) =
∑
𝜏

L𝜏 (𝑥𝑖 , 𝑞𝜏𝑖−1 ), (3)

as done e.g. in [8], whereQi−1 is the vector of dimension |𝜏 | holding
all the quantile estimates, and typically the networks𝜙 (𝑞𝜏𝑖−1 ) would
share some parameters between the different 𝜏s. Indeed, since each
recurrent cell takes as input (and outputs) |𝜏 | quantile estimates,



KDD-MLF-2020, August 24, 2020, San Diego, CA, USA D. Muelas, L. Peinado, A. Brando, J. A. Rodríguez-Serrano

Figure 3: Example of quantile regression on a syntehtic
dataset, showing the forecast of the quantile 𝜏 = 0.5 (solid
line) and 𝜏 = 0.1 and 𝜏 = 0.9 (dashed lines), for each 𝑥 .

and holds (and updates) a hidden state hi ∈ R𝑠 , the function to
learn for each recurrent cell has the form

𝜙 : R |𝜏 | × R𝑠 → R |𝜏 | × R𝑠

(𝑞0.05𝑖 , 𝑞0.5𝑖 , 𝑞0.95𝑖 , ℎ𝑖 ) ↦→ (𝑞0.05𝑖+1, 𝑞0.50𝑖+1, 𝑞0.95𝑖+1, ℎ𝑖+1)
(4)

Remarkably, one of the key aspects is that this network architec-
ture with estimations of quantiles allows us to model the balance
time series in a very flexible way. Specifically, the quantile regres-
sion is able to capture the non-symmetric nature of these series.

3.2 Detection of anomalies
We use a threshold-based anomaly detection approach that relies
on the quantile regression results. Specifically, our engine raises an
alarm if

(P{𝐵𝑎𝑙𝑎𝑛𝑐𝑒 (𝑡) < 𝑋𝑡 } < 𝑇ℎ𝑟𝑚𝑖𝑛) ∨
(P{𝐵𝑎𝑙𝑎𝑛𝑐𝑒 (𝑡) > 𝑋𝑡 } > 𝑇ℎ𝑟𝑚𝑎𝑥 )

(5)

where 𝑋𝑡 , 𝐵𝑎𝑙𝑎𝑛𝑐𝑒 (𝑡) are the predicted quantiles and observed val-
ues for time 𝑡 respectively, and (𝑇ℎ𝑟𝑚𝑖𝑛 +𝑇ℎ𝑟𝑚𝑎𝑥 ) is the anomalous
range’s probability. To offer noticeable results without overwhelm-
ing customers, we heuristically control (𝑇ℎ𝑟𝑚𝑖𝑛 +𝑇ℎ𝑟𝑚𝑎𝑥 ) by con-
sidering as anomalies those observations outside an interval of the
form:

[𝑞0.05 − 𝑘1
(𝑞0.50 − 𝑞0.05)
(𝑞0.95 − 𝑞0.05)

(𝑞0.95 − 𝑞0.05),

𝑞0.95 + 𝑘2 (1 −
(𝑞0.50 − 𝑞0.05)
(𝑞0.95 − 𝑞0.05)

) (𝑞0.95 − 𝑞0.05)]
(6)

which is inspired in the proposal by Hubert and Vandervieren [15]
to adapt the well-known Tukey criterion to asymmetric distribu-
tions.

Here, both 𝑘1 and 𝑘2 enable the introduction of differential
weights for abnormal values above / below the non-atypical values’

range. Note that, as Hinkley’s coefficient:

0 =
((𝑞0.95 − 𝑞0.50) − (𝑞0.50 − 𝑞0.05))

(𝑞0.95 − 𝑞0.05)
(7)

is 0 for symmetric distributions, if we scale [𝑞0.05, 𝑞0.95] to [0, 1],
then

|𝑞0.50 − 𝑞0.05 | + |𝑞0.95 − 𝑞0.50 | = 1 (8)

and
|𝑞0.50 − 𝑞0.05 | → 0.5
|𝑞0.95 − 𝑞0.50 | → 0.5

(9)

when the distribution tends to be symmetric.
Therefore, with 𝑘1 = 𝑘2 = 4, these intervals converge to the

following expression for fairly symmetric distributions:

[𝑞0.05 − 2(𝑞0.95 − 𝑞0.05), 𝑞0.95 + 2(𝑞0.95 − 𝑞0.05)] (10)

which empirically showed good results in terms of detected events—
although it may be somehow restrictive in case of Gaussian dis-
tributions, it suits the heavier-tailed nature of balance series and
controls the number of alerts when asymmetry increases.

Anyhow, these parameters can be tuned to reflect a less restric-
tive behavior or to introduce bias towards the detection of negative
or positive divergences.

3.3 Analysis of transactions behind events
The stages described so far enable the system to pinpoint extreme
events, but their outcomes may be too narrow to offer meaningful
and self-explanatory insights about them. In this light, we have
complemented the detection of abrupt changes in the balance series
with the analysis of transactions related to such events.

To do so, the last stage of the pipeline determines whether there
is a small number of movements that can explain the change of
balance. In other words, once an anomalous event is detected in
the end-of-day balance for account 𝑘 at day 𝑡 , this module searches
in the setM𝑘

𝑡 of movements for that account and day, and assesses
if there exists a subset S𝑘

𝑡 such that:
S𝑘
𝑡 ⊆ M𝑘

𝑡

|S𝑘
𝑡 | ≤ 𝑁

|∑
𝑚∈S𝑘

𝑡
𝑚 | ≥ Thr · |ΔBalance𝑘 (𝑡) |

(11)

where 𝑁, Thr are parameters to control the maximum number of
movements to be considered in the explanation of the anomalous
event and the minimum ratio of the variation that must be covered,
respectively.

However, there may be different typologies of events behind
the anomalous values in balance series that require differentiated
treatments.We defined a graph-based exploration of themovements
to assess the existence of these typologies via the detection of
communities.

For the movements in the union of S𝑘
𝑡 for all the accounts, this

engine selects a set of features—e.g., amount or category of expense
/ income—and transforms any continuous feature into categorical
ones—e.g., amount to an absolute indicator of its magnitude. This
representation of movements allows us to define a bipartite graph
consisting of nodes that represent transactions and nodes that
represent the levels of their features.
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Once we have such a graph representation, we have applied
node2vec [14] to obtain a node embedding and determine whether
there are clusters of transactions that relate to specific sets of move-
ments’ attributes. To do so, we have (i) used clustering algorithms
(K-means) on the vectors corresponding to transactions in the em-
bedding, and (ii) analyzed how the transactions’ features relate to
the resulting clusters.

4 METHODOLOGY AND EXPERIMENTS
In this section we describe the context and testing of our system. To
do so, on the one hand we briefly depict the use case in which we
applied it; and on the other hand we define the data and methods
to assess the system’s performance and behavior.

4.1 Definition of the use case
As stated in the introduction, all the elements described above
are part of an automatic system for the detection of unexpected
changes in customers’ balance time series. With this, customers
could receive notifications that include details about such events, to
increase their awareness about the situation. To fulfill this behavior,
the solution was deployed as follows:

(1) The time series forecasting engine is in charge of the pro-
duction of balance predictions with uncertainty. With this,
it offers a basis to foresee future values together with a level
of probability of occurrence.

(2) On its part, the anomaly detection engine takes as input
the most recent forecasts of balance quantiles for the day
of execution—i.e., the most recent forecast for the present.
Therefore, the application of the statistical criterion detects
extreme values w.r.t. the quantiles that were predicted for
the present.

(3) The extreme events detected in the time series are linked to
the financial transactions happening between the produc-
tion of forecasts and the detection of the anomalies. These
transactions are clustered in terms of some of their attributes,
to gain insights into the type of situations that generate the
abrupt and anomalous values in the series.

4.2 Description of methods
The results that we present in the following sections are mainly
obtained from the application of the previous elements to real finan-
cial data in a pre-productive environment. We have also included
some synthetic modifications of the input data to illustrate and
validate relevant characteristics of our system.

Therefore, our methodological approach was somehow similar
to a natural experiment: that is, after the validation of the engines
and models in the system, we focused on the analysis of its output
after processing data from productive scenarios. We believe that, al-
though this approach may make harder the extrapolation of results,
it offers a more realistic and interesting evaluation in an industrial
environment.

Our data sources cover financial transactions and end-of-day
balance time series from anonymized customers. Specifically, the
input for the forecasting engine are series lasting several months 1,

1Details regarding this matter cannot be disclosed.

and its output consists of the values of quantiles for the next days—
the specific number of days is a settable parameter, and aleatoric
uncertainty increases when forecasts are made for several weeks
in the future.

We have included results for a random day of late 2019 for the
behavioral characterization of the anomaly detection engine. The
time lapse between quantile forecasts and the application of the
anomaly detection engine was one day.

Finally, the analysis of movements related to the most relevant
financial transactions within anomalous periods was restricted
to non-sensitive features of transactions—namely, the category
of expense / income; amount of the movement; and movement
typology.

Regarding the tests with synthetic variations of the input data,
we added some common transformations to balance time series to
illustrate and assess their effect on the forecasting engine output.
Specifically, we focused on the effects of (i) linear trends, (ii) adding
constant values and (iii) increasing series’ variance, to determine
how forecasts can adapt to typical situations in our scope.

5 RESULTS
5.1 Forecasting
We first focus on the performance of the time series forecaster. To
do so, we consider its results in a task to characterize its precision
and calibration; and then illustrate its qualitative response during
inference to typical variations of the input time series.

Table 1 summarizes the performance of the time series fore-
casting model in a supervised task. Specifically, the prediction of
overdraft in account balance in next 14 days by using different
quantiles. We consider overdraft prediction when a determinate
quantile—[0.6,0.7,0.8,0.9,0.95]—is less than zero. These results show
the good calibration of the algorithm, given that the accuracy is
near of the quantile value—i.e., the relative frequency of overdraft
is near the probability of the balance being less or equal than zero.

Table 1: Overdraft prediction considering 6 different data
points as samples to evaluate the performance of each quan-
tile during the next 14 days.

Precision Table 0.6 0.7 0.8 0.9 0.95
Minimum sample 6487 2857 766 148 49
Maximum sample 44,109 30,847 20,393 10,294 3649
Accuracy 72.01±6.38 75.52±7.01 82.07±6.286 88.59±6.18 89.19±5.25

Finally, Fig. 4 presents examples of the output of this model—
observed values are presented in red with dots, predicted quan-
tiles are shadowed, and median value is displayed with a black
dashed line. It also includes the results when the original data is
transformed adding noise and trends—namely, Gaussian noise with
𝜇 = 0.5 · 𝑎𝑣𝑔(𝑋 ), 𝜎 = 0.5 · 𝑠𝑡𝑑 (𝑋 ) being 𝑋 the original time series; a
constant value (5000) plus a linear trend 50 · 𝑡 ; and a constant value
(5000) plus a linear trend 100 · 𝑡 .

These synthetic experiments are intended to show (i) the adapt-
ability of the forecast to different trends; and (ii) the increasing
uncertainty as a result of higher input variability and longer predic-
tion intervals. These effects clearly appear in the inference results,
and illustrate the flexibility of this approach for sets of time series
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(b) Original time series plus Gaussian noise.
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(c) Original time series plus linear trend, 50 · 𝑡 .
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Figure 4: Example of pattern learning in the output of the time series forecasting engine when several transformations are
applied to a real balance time series.

that include heterogeneous patterns and typologies in terms of
trends and variability.

5.2 Spotting anomalies in financial time series
The next step in our system is the anomaly detection engine. As
stated above, it relies in the most recent forecast of time series
distribution to evaluate how likely is their observation. Some illus-
trative examples are included in Fig. 5, which presents observed
values, forecasts, and confidence bands for a couple of series. Note
that, although the bands are considered only for the detection of
anomalous events that happened in the last observed day, we have
included them along the complete series to assess how they relate
to past values.

The anomaly detection engine detects the observable spikes in
the series—last observation of real values, which is displayed as a
red line with dots—relying on the forecasts of the previous day—
dashed black line and shadowed regions. Here, we also included the
confidence bands—regions in green along each plot—showing how
these points correspond to values out of them. These illustrative
examples show how the bands (and the predicted quantiles) reflect
the asymmetry of the series and, therefore, allow the engine to
detect values which are unlikely following the expected distribution
for future values of the series.

Regarding the evaluation of the outcomes of the anomaly de-
tection engine, we have measured if the detected events relate to
abrupt changes in the balance series—hence, following an unsuper-
vised approach. Fig. 6 illustrates the relation between the absolute
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(a) Low relative variance, broad confidence interval.
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Figure 5: Example of time series with anomalous event. The
last observation is outside the projected confidence interval
(in green).

change in the series and the minimum distance to the confidence
band and their respective marginal densities.

This analysis shows that there is a noticeable relation between
these two indicators, which is necessary to guarantee that detected
anomalous events are significant. However, low changes can be
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also detected if they appear in very stable series or if the predicted
trend is far from the observed value. Note that this behavior can
be qualitatively assessed in the second example in Fig. 5, where
the forecasts captured the decreasing trend in the series while the
actual value exhibited a fairly atypical increment in balance.
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Figure 6: Analysis of the relation between the deviation
(minimum distance from the confidence threshold) and the
absolute change in the time series.

5.3 Analysis of the movements
Finally, we now focus on the outcomes of the analysis of move-
ments behind the anomalous events in the series. We recall that we
have considered the possible clusters or communities among the
movements by analyzing the relations in a bipartite graph using
node2vec.

Fig. 7 shows the results of this process. There, we present the
representation of movements after the application of PCA to the
vectors of the node embedding. Colors relate to the values of some
of the financial transactions’ features—specifically, (a) the rounded
decimal logarithm of the absolute movement amount; (b) the ex-
pense / income category; and (c) the type of movement.

This analysis shows that this process is able to capture and
differentiate groups of movements that share part of their features.
Hence, this approach can offer a basis to define custom policies for
anomalous events related to different movement typologies.

5.4 Discussion
We have presented several results regarding the application of
multiple state-of-the-art machine learning techniques to a complete
use case for customer advising in banking services. We would like
to remark three lessons learned from this work, which we believe
can help to pave the way for future solutions with further added
value for customers:
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(a) Amount magnitude.
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(b) Expense / income category.
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(c) Type of movement.

Figure 7: Clustering of anomalous events w.r.t. (a) amount;
(b) expense / income category; (c) type of movement.

(1) We have seen how the modeling of uncertainty in real appli-
cations of machine learning offers outstanding qualitative
improvements for the analysis of forecasts. In this regard,
our solution provides means to (i) capture complex time
series behaviors and (ii) observe and quantify the possible
variability of future values w.r.t. the model predictions.

(2) We have illustrated how this approach provides a natu-
ral basis to build confidence intervals to both evaluate the
proper model predictions and detect excursions of future
observations—i.e., those with a very low probability of oc-
currence.
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(3) This system is intended to offer automatic notifications to
end users. Therefore, we have included a final step which is
able to pinpoint causes of the anomalous event in the balance
series. Furthermore, this can offer further information to
enrich the context via the analysis of anomaly groups.

We believe that these lessons can help researchers and practi-
tioners in the machine learning and banking communities during
the definition of future services and use cases.

Anyhow, we envision some aspects that may be tackled to im-
prove this type of systems. Particularly, the spotting and infor-
mation provided by this type of solutions may be also related to
customers’ preferences and overall interests. Therefore, we foresee
the introduction of feedback and user-centered information to not
only notify the apparent occurrence of unexpected events but also
to include an explicit optimization of utility for customers.

6 CONCLUSIONS
Along this work, we have presented the results of the application of
a complete analytical pipeline that offers comprehensive insights for
customers regarding their end-of-day account balance. To accom-
plish this task, our solution puts together time series forecasting
(S1); anomaly detection techniques (S2); and analysis of causes
behind the detected anomalous events (S3).

Our results illustrate the potential of advanced analytic to help
customers with the control of their financial situation. Future work
lines include the refinement of the analysis by means of customiza-
tion of results by introducing reinforcement w.r.t. interest metrics.
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